Numerical Simulation of Hot Closed Die Forging of a Low Carbon Steel Coupled with Microstructure Evolution
نویسندگان
چکیده
Hot closed die forging is a regular process applied to manufacture metallic components used in supporting and fixing cable conductors in electric power transmission lines. In this forming process, the final microstructure of the workpiece depends on the control of several processing parameters. In this study, simulation of the industrial forging process of a ball hook component was performed using the finite element software DEFORM-3D following the thermomechanical procedures coupled with microstructure evolution. This simulation allowed the study of the process parameters such as temperature, strain and strain rate and microstructure evolution during hot closed die forging of a low carbon steel. The geometry and grain size evolutions obtained by simulation are compared with those found in the actual process and measured by optical microscopy. The attained data indicated that the simulation is able to describe processing parameters and microstructure evaluation during hot forging of a metallic component.
منابع مشابه
Texture Evolution in Low Carbon Steel Fabricated by Multi-directional Forging of the Martensite Starting Structuree
It has been clarified that deformation and annealing of martensite starting structure can produce ultrafine-grained structure in low carbon steel. This study aims to investigate the texture evolution and mechanical properties of samples with martensite structure deformed by two different forging processes. The martensitic steel samples were forged by plane strain compression and multi-directio...
متن کاملDetermination of Load and Strain-Stress Distributions in Hot Closed Die Forging Using the Plasticine Modeling Technique
An axisymmetric hot closed die-forging process has been studied by physical modeling technique using the plasticine. To observe the material flow pattern, layers of plasticine with different colors were used. The normal direction to the layers was considered a principal direction. The strain distribution was obtained by measuring the thickness of the plasticine layers. Based on the strain distr...
متن کاملForgeability Study of Medium Carbon Micro-Alloyed Forging Steel
Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels...
متن کاملNumerical and Experimental Investigation of Cold orBital Forging of a 16MnCr5 Alloy Spur Bevel Gear
The purpose of this research is to analyze the forging of bevel gears based on conventional forging method with material number 1.7131 with finite element method by means of SUPER FORGE software and to compare it with experimental cold orbital forging results.After doing simulation of conventional forging and obtaining press tonnage due to orbital forging method with DEFORM software, orbital fo...
متن کاملThe Effect of Controlled Thermo Mechanical Processing on the Properties of a High Strength Steel
In this paper, an ultra low carbon High Strength Low Alloy Grade Steel was subjected to a two-step forging process and this was followed by different post cooling methods. The highest strength was obtained at a faster cooling rate due to the highly dislocated acicular ferrite structure with the fine precipitation of microalloying carbides and carbonitrides. At a slow cooling rate, the strength ...
متن کامل